Bell Ringer - Solve for x. Round to the nearest hundredth.

$$-6x^2 + 5 = -79$$

Bell Ringer - Solve for x. Round to the nearest hundredth.

$$-6x^{2} + 5 = -79$$

$$-5 - 5$$

$$-\frac{6}{2}x^{2} = -84$$

$$-6$$

$$x^{2} = 14$$

$$x^{2} = \sqrt{14}$$

$$x^{2} = \sqrt{14}$$

$$x^{3} = \sqrt{14}$$

Quadratic Formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Formula is used to find the solutions to a quadratic function. Remember a quadratic function is $y = ax^2 + bx + c$.

Solutions are the x-intercepts of the parabola.

To use the formula, substitute values for a, b, and c.

Note: a ≠ 0

b² - 4ac ≥ 0 to have real solutions Why? cannot take the square root of a negative.

Remember to the use the quadratic formula, the quadratic function (equation) must be in standard form.

Standard Form: $ax^2 + bx + c = 0$

** watch the negatives **

1)
$$2x^2 - 3x = 8$$

1)
$$2x^2 - 3x = 8$$
 $S_*F_* \quad 2x^3 - 3x - 8 = 0$

$$-\frac{-3\pm\sqrt{(-3)^{2}-4(2)(-8)}}{2(2)}$$

$$\frac{3+\sqrt{9+64}}{4}$$
 and $\frac{3-\sqrt{9+64}}{4}$

$$\frac{3+\sqrt{73}}{4}$$
 and $\frac{3-\sqrt{73}}{4}$ X= 2.89

2)
$$-14x = -2x^2 + 36$$

2) -
$$14x = -2x^{2} + 36$$
 S.F. $2x^{2} - 14x - 36 = 0$

$$-\frac{14}{\sqrt{(14)^{2}}} - 4(2)(-36)$$

$$2(2)$$

$$\frac{14 + \sqrt{196 + 288}}{\sqrt{4}} \text{ and } \frac{14 - \sqrt{196 + 288}}{\sqrt{4}}$$

$$\frac{14 + \sqrt{484}}{\sqrt{4}} \text{ and } \frac{14 - \sqrt{484}}{\sqrt{4}}$$

$$\frac{14+22}{4}$$
 and
$$\frac{14-22}{4}$$